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PREFACE 

This paper has been prepared for Mr. Thomas Hafer, Deputy Director Advanced 
Systems Technology Office, ARPA, in partial fulfillment of IDA task order on Analysis 
and Model Development. Additional cognizance and direction have been provided by 
Mr. John Brand and Mr. Eugene Patrick, U.S. Army Research Laboratory (ARL), S3I 

Special Projects Office; and Mr. John D'Agostino, U.S. Army Night Vision and Electro- 
optics Systems Directorate (NVESD), Visionics Division. 

These analyses would not have been possible without the high quality target 
acquisition performance data obtained by the Visionics Division of NVESD in their Phase I 
and Phase fV target acquisition tests. 
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EXECUTIVE SUMMARY 

As a participant in the Army's Target Acquisition Model Improvement Program 

(TAMIP), IDA has helped the Army's Night Vision and Electro-optics Systems Directorate 

(NVESD) improve models of human performance in target acquisition tasks using infrared 

sensors. One product of NVESD work is a model that predicts target detection probability 

based on measurable properties of the target and the background scene. 

As is true of any model that computes probability, this model cannot precisely 

predict the result of any given experiment Any finite sample of data will give an imprecise 

estimate of the probability of a given event. The expected departure of the data from the 

actual probability can be predicted on statistical grounds. If the actual disagreement 

between the data and the model exceeds this expected value, then there must be some 

residual modeling uncertainty. 

In this paper we assess the quantitative agreement of the NVESD model with the 

available test data. Because of the good statistical reliability of the observer tests that were 

performed by NVESD in support of TAMIP, the experimental variability is small enough 

that the model uncertainty can be reliably measured. Our analysis shows that when the 

prediction that is computed by the model is suitably transformed, the model uncertainty is 

unbiased in the sense that it is numerically independent of the true probability. This 

property allows us to evaluate the remaining model uncertainty in a simple way. 

Our final result is a quantitative description of the modeling uncertainty that is both 

accurate and easy to use. In particular, it is very easy to numerically simulate the 

uncertainty. In a forthcoming work,1 we will exploit this property and demonstrate how to 

incorporate modeling uncertainty (as well as variation among observers) into wargaming 

simulations. 

1    James D. Silk, Modeling the Observer in Target Acquisition, Institute for Defense Analyses, IDA Draft 
Paper P-3102, in preparation. 
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I.   INTRODUCTION 

A. BACKGROUND 

No model that predicts probabilities, however accurately, can be expected to 
precisely match a given set of data. There will always be unpredictable "statistical 
fluctuations" which depend on the size of the sample. Our purpose herein is to describe 
quantitatively the degree of departure of the Army's Thermal Target Acquisition Model 
Improvement Program (TAMIP) Model predictions from the available data. If the model 
predictions were exactly correct, then the degree of departure would be consistent with 
well-known binomial error estimates. To the extent that the predictions exceed those 
expected from the binomial analysis, the model predictions are imprecise. 

B. SCOPE 

Note that this dichotomous categorization of errors requires that we define the term 
"modeling uncertainty" in a very broad sense. It includes a multitude of effects that are not 
shortcomings of the model per se. One simple example is the determination of the size of 
the target in a scene; whether determined from geometry or imagery, it is susceptible to 
measurement uncertainty. The model prediction will then reflect the error in the input. A 
complete list of the various sources of error that are expected to play a role is available 
elsewhere.1 For the purpose of this paper, we have taken the point of view of the model 
user (rather than the developer) in that we are adopting the most inclusive interpretation 
possible of "modeling uncertainty." 

C. OVERVIEW 

We find in Section II that the variation of the current data from the model is 
inconsistent with the expected statistical error, therefore, the model predictions are not 
precise. We then determine a quantitative, unbiased measure of the model uncertainty in 
Section HI. In Section IV we demonstrate that the uncertainty estimate is accurate for a data 

1    John D'Agostino ct al., "Final Technical Report for FY93: TAMIP Thermal Modeling Program," 
NVESD Report, May 1994. 
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set that was not used in the quantitative formulation of the model. Finally in Section V we 

review the results and consider the scope of their validity. 



II.    STATISTICAL UNCERTAINTY 

The Thermal TAMIP product predicts detection probability on the basis of a single 

composite statistic, 

D   1+Xb 

where the exponent E = 3. The statistic is determined from three variables, in the form 

X = CONSTANT x PSS^^REA.  . (Eq. 2) 

We prefer the natural logarithm of this predictor variable, x = In X (see below). Then 

x = constant + ln(PSS) + ^ln(AREA) - ln(SV) (Eq. 3) 

and 

exp(Ex) 
*D    l+exp(Ex)   * ^q'4; 

Figure II-1 compares the prediction based on this formula with the data from the 

NVESD Phase 1 observer tests. (This is the data set that was used in the development of 

the Thermal TAMIP Model.2) We observe in Fig. II-1 that the data clearly follow the trend 

represented by the model but that there is some departure from the prediction. Note also 

that by using the logarithmic predictor, x, as the independent variable, we have made the 

"horizontal scatter" in the data fairly uniform for all PD- This property will be very impor- 

tant later because it allows us to construct an unbiased model of the prediction uncertainty. 

For a given fixed probability and a given number of samples, simple application of 

the binomial formula yields the frequency distribution that the test results would be 

expected to follow. Twenty-two observers participated in this test. The plot in Fig. II-2 

illustrates the frequency distributions expected for this size sample for several fixed 

probability values. 

Barbara L. OTCane, Clarence P. Walters, John D'Agostino, Mel Friedman, "Target Signature Matrices 
for Performance Modeling," Proceedings of IRIS Symposium on Passive Sensors, Vol. 2, p. 161, 
1993. 
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Figure 11-1.   The optimal (or   maximum likelihood) fit, 
superimposed on the NVESD Phase 1 data. 
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Figure 11-2.   Expected distribution of experimental results for 
22 observers, assuming various known probabilities. 



The question that we wish to answer is whether the scatter in the data of Fig. II-1 is 
primarily due to binomial statistical errors, or to an imperfect model. Our strategy is to 
construct an error envelope around the prediction (the curve in Fig. II-1) corresponding to 
some confidence interval. If the fraction of the data points enclosed by the error interval is 
consistent with the specified error interval, then the uncertainties for a single case would be 
primarily statistical, and the errors in the model could be assumed to be relatively small. 
This is in a sense the inverse of the simpler problem that we solved in the preceding 
paragraph. That is, given a set of test data, we need to compute the "error bar" associated 

with the corresponding probability estimate. 

The determination of binomial error intervals is, unfortunately, not completely 
model free. The usual approach is Bayesian, and it is therefore necessary to specify a prior 
distribution of the probabilities that are to be estimated. We leave the details of the 
computation of the confidence interval to the Appendix, and show the results in Fig. II-3. 
We note two aspects of that computation. First, the choice between the two most common 
models of prior distributions do not make any appreciable difference here; we choose the 
one that shows most consistent with the test conditions. Second, this model gives the 
maximum likelihood estimate of probability as 

_        n+1/2 ^   n m      e\ 
PD=NTT'notN <Eq.5) 

so we use this prescription in Fig. II-3. 

The confidence interval that we have displayed is the 10-90 percent interval. 
Therefore 80 percent of the data points should fall between the solid curves in Fig. II-3. 
Instead, that region encompasses only 105 out of 275 points, or 38 percent. We conclude 
that the residual errors in the model prediction are more significant than the statistical 
uncertainties at the precision of the NVESD test. 
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Figure 11-3.   As Figure 11-1, with binomial error envelope 
about the maximum likelihood fit. 



III.   MODEL CONFIDENCE INTERVAL 

We have established that the variation of probability model predictions from the 
estimates deduced from the NVESD tests exceeds that expected from the finite statistical 
samples. Therefore, a description of the model uncertainties must measure the uncertainty 
associated with our model predictor, x. In other words, referring to Fig. II-3, the "vertical 
errors" do not suffice to explain the data, so we must quantify the "horizontal errors." 

Our presumption is that the model predictor x, given by Eq. 2, is only an 
approximation to the true predictor, x', which is presumed to exist but is still unknown. 
We shall also presume (since the data seem to support it) that the model predictor is an 
unbiased estimate of the true predictor. That is, 

x = x'+ Ti . (Eq. 6) 

Before determining the error envelope for x, we need to review the procedure by 
which the exponent E in Eq. 1 was determined. The choice of E represents a maximum 
likelihood estimate of the prediction of the detection probability. In effect, the choice 
represents a minimization of the vertical component of the variations in Fig. II-1. On the 
other hand, we have now determined that the actual source of the error is in the estimate x 
of x1, and conjectured that the error is independent of x'. Therefore we need to determine a 
new fit which minimizes the horizontal departure of the data from the fit from this baseline; 
then residuals in the x coordinate can be determined (in an unbiased manner) and associated 
with confidence intervals. 

Figure HI-1 shows two fits. The first, shown as a solid line, is the same one 
shown in Figure II-1. It is based on a maximum likelihood fit of the predicted PD to the 

data, and therefore in a sense attempts to minimize the scatter in the vertical direction. The 
second fit, shown as a dashed line, is steeper than the first. It was obtained using the same 
functional form as the first (Eq. 4), but with a different value of E, which is chosen to 
minimize the mean square departure in the horizontal direction. Inspection verifies that the 
horizontal scatter from the steeper curve is quite independent of the position along the 
curve. 
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Figure 111-1.   As Figure 11-1, with additional fit that minimizes the 
horizontal variance between the fit and the data. 

The cumulative probability plot in Figure III-2 shows the distribution of the residual 
in the predictor based on the second fit. By residual, we mean here the horizontal distance 
between the data and the new fit. In the context of our assumptions about x and x', this 
plot should reflect the statistics of the random variable T|. Since the percentile coordinate of 
the graph is normalized, the fact that the graph is nearly straight line means that the error is 
approximately Gaussian. It is easy to pick off the 10 percent and 90 percent confidence 
limits, which correspond to an 80 percent confidence interval x ± 8x where 8x = 0.45. 
(This cumulative distribution can in principle be used to determine any desired confidence 
interval. For various reasons to be discussed later, we recommend that this 10-90 percent 
interval be used generally.) 

This value is used to generate the 80 percent confidence envelope in Figure ni-3. It 
is easy to see that this envelope is unbiased, as the data that fall outside the envelope are 
uniformly distributed in Pr> This completes the specification of the model uncertainty. 
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Figure III-2.   Cumulative distribution of the residuals corresponding 
to the random contribution to the predictor variable. 
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Figure ill-3.   As Figure III-1, with the 80 percent confidence envelope. 
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IV.   VALIDATION USING PHASE 4A DATA 

The NVESD Phase 1 data set formed the foundation for the analyses which 
supported the Thermal TAMIP model development. Due to the need for an extensive, well- 
controlled test database it relies on simulated sensors and model targets and backgrounds. 
The Phase 4 data set is superior in the sense that it was conducted using real thermal 
imagery collected in the field. It is perforce more limited (due to expense) and less 
controlled, and therefore the ideal resource for model validation. 

Figures IV-1 and IV-2 are the analogs of Figures III-2 and III-3, but these come 
from the Phase 4 data set. Note that the 80 percent error interval and the least squares fit 
value of E = 5 for this data set are essentially identical to the Phase 1 values. (The overall 
constant of Eq. 3 was, however, chosen to optimize the fit. This reflects the effects of the 
difference between the simulated and real sensors.) 
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Figure IV-1.   Analogous to Figure III-2, but for the Phase 4 data set. 
Recall that in Fig. III-2 the 10 and 90 percent points were at ± 0.45. 
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V.   SUMMARY AND DISCUSSION 

The statistical errors in the present data samples, which are based on cohorts of 22 
and 36 observers, have been shown to be small compared to the model uncertainty. We 
estimate that the crossover point, where the statistical errors are comparable to the model 
uncertainty, is in the vicinity of eight observers. 

To establish unbiased confidence intervals for the model predictions, we have 
introduced a new exponent for use in Eq. 4. The new formula is used to generate 
confidence estimates for the predictor, x. We have, in so doing, introduced the notion that 
there is a "true predictor" x', for which the measured parameter x is an unbiased estimate, 
and that PD is precisely determined via Eq. 4 using the new exponent. We find that a value 
of E = 5 removes the bias from the predictor residuals, and that the 10-90 percent 
confidence interval for the predictor corresponds to ± 8x = 0.45. 

Intuitively, the steeper curve may look like a better fit than the shallower one. 
Nevertheless, it would be wrong to use the E = 5 curve to predict performance based on the 
current formulation of x. The resulting predictions will grossly underestimate PD at low x, 
and grossly overestimate it at high x. The value of E = 3 is the only one that will give 
predictions of PD that are trustworthy. The point here is that E = 5 applies only to the 
"true" predictor x'—which is at best still unknown, and may not even exist 

The confidence interval itself must be chosen judiciously. Clearly, since there are 
275 trials in the sample, it doesn't make sense to push the confidence interval much past 
5-95 percent. Moreover, since the unbiased confidence envelope has an unfortunate 
property in that it crosses the maximum likelihood prediction at extreme values, it is unwise 
to push the envelope much tighter than roughly 20-80 percent 

12 
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APPENDIX 
COMPUTATION OF BINOMIAL UNCERTAINTIES 

The Mathcad™ script shown on the following page performs the computation of the 

binomial confidence intervals. The method is based on the book by Martz and Walker.1 

1    Harry F. Martz and Ray A. Walker, "Bayesian Reliability Analysis," John Wiley & Sons, 1982. 

A-2 



This file computes error bars on binomial success probabilities. 
The estimate is Bayesian with equal prior probability. 
See Martz & Waller, Bayesian Reliability Analysis. 
Run time for N=40 is about half an hour. 

f(p,n,N) :=• 

xn-(l-x)N"ndx 

xn-(l-x)N_ndx 

Define the PDF. f is the probability that the true 
success probability is less than p, having 
measured n successes out of N trials. 

«        XTS - HN+2) fP   n N_n f(p,n,N) x -(1 —x) 
IXn+D-rXN-n+l)   L 

dx This form runs faster, but 
will eventually overflow. 

Given     f( p, n, N) =g        Now wish to invert the PDF to findp=P in terms of f=g. 
„T    ,._.,,,      P is defined as a solve block. Note initial guess is passed as 

P( g, n, N, p) .= Fmd( p)      an argument. 

Now set up inputs, the number of samples 
and the desired confidence interval: 

Symmetrize the confidence limits 
and loop over n. 

„:=<>..£      PLn:=p(gl0,n,N,^ 

Use symmetry 
of limits to 
save time. 

PLN_n:=i-PHn 

n :=0..N 

„„   .   n+0.5 
PMn :=  n       N+ 1 
„,   .   n + 1 
PE„ :=  n      N+2 

N :=22 

glo:"' 
1-CI 

ci := .80 

.   l + CI 
Shi 7T- 

PHn:=p(ghi,n.N,^ 

PHN_n:=i PL„ 

PH 

PM 

0.5 - 
PE 

PL 

Results. 

N = 22 

glo = 0-1 8 hi = 0-9 

m :=0..3 

PLm m P^ 
0.005 0.095 
0.023 0.159 
0.049 0.215 
0.078 0.268 

M<0> :=PM 

M<!> :=PL 

H A<2> :=PH 

Toggle WRITEPRN if you 
really want to save results: 

WRITEPRN(err22) :=Mo 
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